Course Descriptions for the Joint Study Programme "International Master of Science in Engineering, Entrepreneurship and Resources (MSc. ENTER)

Version 07.2024

Courses at **Technische Universität Bergakademie Freiberg** with the Specialization "**Mechanical and Process Engineering**"

Module Name	Training in Particle Technology
ECTS Credits	4
Responsible	Urs A. Peuker, Prof. DrIng.
Lecturer(s)	Research assistants at the Institute of Mechanical Process Engineering and
	Mineral Processing
Institute(s)	Institute of Mechanical Process Engineering and Mineral Processing
Duration	1 Semester (winter)
Teaching Language	English
Learning Outcome	This module is designed to introduce or review the core principles of particle
(Competencies)	technology. It utilizes specialized exercises aimed at honing scientific and
	technological skills in calculating particle size distributions and understanding
	fundamental micro-processes. Furthermore, the module introduces the
	physical principles governing mechanical microprocesses. Through a series of
	exercises and case studies, students will learn to apply these fundamental
	approaches in describing and designing process equipment on a level of
	conceptional engineering.
Contents	Particle characterization
	Particle size distribution
	Mixing of particle size distributions
	Separation of particle size distributions (classification)
	Micro processes in particle technology
	 Particles in flow-fields (i.e. sedimentation)
	 Flow through porous media
	 Particle-particle interactions (e.g. van-der-Waals-forces,
	 electrostatic interactions, DLVO-theory, capillary forces)
	 Breakage laws (i.e. breakage energy)
	Selected case studies form the fields:
	Filtration
	Sedimentation
	Agglomeration
	Classification
	Comminution
	And others
Teaching Methods	Lectures – Recall of fundamentals (1 semester week hour)
	Case studies / Exercises – Application of fundamentals (2 semester week hours)
Pre-requisites	Not mentioned

Assessment	For the award of credit points it is necessary to pass the module exam, which
Methods	contains:
	written exam [120 min]
	 Pre-exam assessments: test (midterm)
	The test is integrated in the lecture / excercise in the midterm of the
	lecture series. Before the exam, the pre-exam assessments have to be
	satisfied.
Grading	The grade is generated from the examination result(s) with the following
	weights (w):
	• KA: written exam (1)
Materials/literature	M. Stieß: Mechanische Verfahrenstechnik 1 - Partikeltechnologie,
	Springer-Verlag, Berlin, Heidelberg, 2009
	H. Schubert: Handbuch der Mechanischen Verfahrenstechnik, Wiley-
	VCH, Weinheim, 2003
	selected scientific papers
Workload	120 h (attendance: 45 h; self-studies: 75 h)

Module Name	Training in Endurance and Design
ECTS Credits	6
Responsible	Matthias Kröger, Prof. Dr.
Lecturer(s)	Matthias Kröger, Prof. Dr.
	Robert Szlosarek, Dr.
Institute(s)	Institute for Machine Elements, Engineering Design and Manufacturing
Duration	1 Semester (winter)
Teaching Language	English
Learning Outcome	The students are able to analyze and design machine elements and machines.
(Competencies)	The students can dimension the main machine elements and can give a
	prediction of the endurance of these elements.
Contents	The module focuses on the following topics:
	Introduction in a CAD system
	 Dimensioning of components for static and cyclic loadings
	 Load analyzes of measured force or stress data
	Design of shaft bearing systems and endurance calculation of bearings
	 Selection and calculation of screws and screw junctions
	 Endurance of gears and design of gear boxes
	Own design and dimensioning of a bearing system and a gear box
Teaching Methods	Lectures (1 semester week hour)
	Exercises (2 semester week hours)
	Practical application (1 semester week hour)
Pre-requisites	Recommendations: basic knowledge in engineering design
Assessment	For the award of credit points it is necessary to pass the module exam, which
Methods	contains:
	written exam (120 minutes)
	 Pre-exam assessments – dimensioning and technical design
	Before the exam, the pre-exam assessments have to be satisfied.
Grading	The grade is generated from the examination result(s) with the following weights
	(w):
	• written exam (1)

Materials/literature	V. B. Bhandari: Design of Machine Elements, Fourth Edition. Mc Graw Hill
	Education, India (2016).
Workload	180 h (attendance: 60 h; self-studies: 120 h)

Module Name	Conception of Process Equipment
ECTS Credits	5
Responsible	Urs A. Peuker, Prof. DrIng.
Lecturer(s)	Urs A. Peuker, Prof. DrIng.
Institute(s)	Institute of Mechanical Process Engineering and Mineral Processing
Duration	1 Semester (winter)
Teaching Language	English
Learning Outcome	The aim is the teaching of holistic engineering thinking to process engineers. It
(Competencies)	brings together the approaches of mechanical engineering and the process and material laws of process engineering. It reveals fundamental strategies in conceptual and basic engineering. The students learn to analyze how a unit- operation is set up and executed in an apparatus and how apparatuses and machines are combined to an entire process. Different case studies are used to analyze exemplarily the limitations, differences and strengths of several machine and apparatus concepts. The module further introduces material laws of suspensions, wet and dry powders and particle beds. Auxiliary units like pumps,
	mixing vessels and stirrers are introduced.
Contents	 Design strategies Design of apparatus / design of process Analyze of unit operation and process equipment Conceptual design Functionality New principles / parallelizing / serializing Material laws Suspension Rheology Agglomerate durability compression laws Auxiliary equipment Mixing vessels Stirrers
Teaching Methods	Lectures (2 semester week hours)
	Exercises (1 semester week hours)
Pre-requisites	Recommendations: Training in Particle Technology
Assessment	For the award of credit points it is necessary to pass the module exam, which
Methods	contains:
	written exam (150 minutes)
Grading	The grade is generated from the examination result(s) with the following weights (w): • written exam (1)
Materials/literature	to be announced in the lecture
Workload	150 h (attendance: 45 h: self-studies: 105 h)

Module Name	Sustainable Engineering
ECTS Credits	4
Responsible	Matthias Kröger, Prof. Dr.
Lecturer(s)	Matthias Kröger, Prof. Dr.
Institute(s)	Institute for Machine Elements, Engineering Design and Manufacturing
Duration	1 Semester (winter)
Teaching Language	English
Learning Outcome	The students are able to analyze the sustainability of developed
(Competencies)	machines based on life-time analyses. The students can design
	machines considering criteria for sustainable design, production and use
	of machines.
Contents	The module focuses on the following topics:
	 Analyses of product life cycle and carbon footprint
	 Assessment of machine design in respect to environmental
	 impact, resource and energy consumption
	 Design for reuse and recycling of machines and components
	 Repair-friendly and durable engineering design
	 Machine design for the Third World
	 Examples of sustainable and not sustainable system design
Teaching Methods	Lectures (2 semester week hours)
	Exercises (1 semester week hour)
Pre-requisites	Recommendations: Design of Machine Elements or Components of Machine and
	Apparatures
Assessment	For the award of credit points it is necessary to pass the module exam, which
Methods	contains:
	• oral exam (min. 30 minutes) or written exam (90 minutes, if 10 students
	or more)
Grading	The grade is generated from the examination result(s) with the following weights
	(w):
	oral exam / written exam (1)
Materials/literature	Brundtland Report 1987.
	https://en.wikisource.org/wiki/Brundtland_Report
Workload	120 h (attendance: 45 h; self-studies: 75 h)

Module Name	Project - Process Design Mineral Processing / Recycling
ECTS Credits	5
Responsible	Urs A. Peuker, Prof. DrIng.
Lecturer(s)	Research assistants at the Institute of Mechanical Process Engineering and
	Mineral Processing
Institute(s)	Institute of Mechanical Process Engineering and Mineral Processing
Duration	1 Semester (winter)
Teaching Language	English
Learning Outcome	The project work aims at the dimensioning one process step of a mineral
(Competencies)	processing or recycling plant. On the basis of lab scale test (e.g. Bond grindability,
	filtration resistance) the students work out a basic engineering of a unit
	operation within a processing plant of a given ore type / recycling question. The
	students learn to select the right lab scale tests, which provide the material and

	process data to quantify the individual processing steps. They learn the balancing
	of the material flows as well as of the auxiliary streams (e.g. process water).
Contents	Seminar:
	 Introduction into project related theory
	Example of a case study
	 Selection of lab scale tests / using standard parameters (e.g. VDI
	• guidelines)
	Documentation
	Project:
	Selection of lab tests
	 Lab work: determination of individual parameters
	 Selection of apparatus / dimensioning of process step
	Presentation of flow sheet.
Teaching Methods	Seminar: process design mineral processing / recycling (2 semester week hours)
	Practical application: project process design mineral processing / recycling
	(8 semester week hours)
Pre-requisites	Recommendations: Conception of process equipment;
	Training in particle technology
Assessment	For the award of credit points it is necessary to pass the module exam, which
Methods	contains:
	 Report (basic engineering - process layout and applied engineering tools)
	 Presentation (determination of key parameters using engineering tools)
	Presentation (process layout)
- "	All the above exams have to be passed or completed with a grade of at least 4.0.
Grading	The grade is generated from the examination result(s) with the following weights
	(W):
	 Report (basic engineering - process layout and applied engineering tools) [w: 2]
	 Presentation (determination of key parameters using engineering tools)
	[w: 1]
	 Presentation (process layout) [w: 1]
Materials/literature	selected papers and textbook chapters for individual project topic (to be
	announced in the first week)
	VDI guidelines and international standards
Workload	150 h

Module Name	Maintenance Engineering
ECTS Credits	4
Responsible	Holger Lieberwirth, Prof. DrIng.
Lecturer(s)	Landgraf Pierre, DrIng.
Institute(s)	Institute for Mineral Processing Machines and Recycling Systems
	Technology
Duration	1 Semester (winter)
Teaching Language	English
Learning Outcome	The students shall be enabled to understand maintenance as a complex of
(Competencies)	technical, technological, organizational and economic tasks and to plan the
	maintenance process within the framework of the production process control,
	to prepare it technologically and to implement it rationally, taking into account
	legal requirements.
Contents	- Content / Purpose / Tasks / Organization of maintenance
	- Damage processes, technical diagnostics, renewal processes
	- Maintenance methods
	- Planning of maintenance measures
	- Maintenance organization
	- Technology of maintenance
	- Reliability of technical systems
	- Maintenance-friendly design and configuration
	- Analysis of weak points of machines and plants
Teaching Methods	Lectures (2 semester week hours)
	Exercises (1 semester week hours)
Assessment	For the award of credit points it is necessary to pass the module exam, which
Methods	contains:
	• oral exam (min. 30 minutes) or written exam (90 minutes, if 10 students
	or more)
Pre-requisites	Not mentioned
Grading	The grade is generated from the examination result(s) with the following weights
	(w):
	oral exam / written exam (1)
Materials/literature	Manzini, R., Regattieri A., Pham, H., Ferrari, E.: Maintenance of Industrial
	Systems, Springer, 2010; DIN EN 13306:2010-12: Maintenance – Maintenance
	Terminology, Beuth, 2010
Workload	120 h (attendance: 45 h; self-studies: 75 h); self-studies include the preparation
	and follow-up of the lectures as well as preparation for the examination.

Elective courses: Students choose at least 6 ECTS points (CP) from the elective course list.

Module Name	Process Development in Mechanical Process Engineering
ECTS Credits	4
Responsible	Urs A. Peuker, Prof. DrIng.
Lecturer(s)	Keller Karsten, DrIng.
Institute(s)	Institute of Mechanical Process Engineering and Mineral Processing
Duration	1 Semester (winter)
Teaching Language	English

Learning Outcome	The aim of the course is to familiarize students with the strategies,
(Competencies)	concepts and processes of technology development and evaluation
	using practical questions from the field of mechanical process
	engineering. The students learn to analyze the development challenges
	and to apply their engineering knowledge holistically. They are aware
	that product development (consumer product, b2b product or
	technology) has certain drivers and that the continuous
	development and innovation is an essential part of engineers work.
Contents	Process Development in Mechanical Process Engineering (part 1):
	Introduction
	 Successful process development in particle technology
	processes
	Product characterizations
	Equipment considerations
	Process options
	 Selection, scale-up, modeling, and optimization
	• Feasibility, pilot trials, and manufacturing
	Project planning
	Process Development in Mechanical Process Engineering (part 2):
	Introduction
	Successful approaches to innovate
	Yield concent
	Throughput improvement
	Selectivity and separation approach
	Product selection and functionality
	Case studies (Chemical processes, Biotechnology processes)
	 Ease studies (chemical processes, biotechnology processes) Ease studies (chemical processes)
	 Open innovation approach
Teaching Methods	 Open innovation approach Lectures: Introduction of content process development (2 semester week hours)
reaching methous	Seminar: Case study in process development in mechanical process engineering
	(1 semester week hour)
Pre-requisites	Recommendations: Module "training in particle technology" or "mechanical
	process engineering" (German) Module "conception of process equipment"
Assessment	For the award of credit points it is necessary to pass the module exam, which
Methods	contains:
	• oral exam: 20 minutes
	 Pre-exam assessments: case study in the frame of the seminar
	Before the exam the pre-exam assessments have to be satisfied.
Grading	The grade is generated from the examination result(s) with the following weights
	(w):
	• oral exam (1)
Materials/literature	Internal teaching materials for the course to be named in the course.
	Additional selected scientific articles (provided in the lecture / OPAL)
Workload	120 h

Module Name	Recycling – Secondary Raw Materials
ECTS Credits	6
Responsible	Urs A. Peuker, Prof. DrIng.
	Charitos Alexandros, Prof.
Lecturer(s)	Urs A. Peuker, Prof. DrIng.
	Charitos Alexandros, Prof.
Institute(s)	Institute of Mechanical Process Engineering and Mineral Processing
	Institute of Nonferrous Metallurgy and Purest Materials
Duration	1 Semester (winter)
Teaching Language	English
Learning Outcome	The students will be able to link the applied module to the engineering and
(Competencies)	scientific fundamentals they have learned during their education. They will get
	an overview on selected process designs in the recycling of secondary raw
	materials. They will be able to analyze and understand the individual process
	steps of mechanical and metallurgical recycling. They will be aware of the
	interlink between mechanical and metallurgical recycling approaches. Finally,
	they be able to apply this knowledge to describe technical issues quantitatively.
Contents	There is a theoretical introduction into different quantitative methods / process
	steps, which are relevant in recycling, e.g.
	Waste regulation
	Logistics / quality control
	Shredding
	 Mechanical sorting (magnetic, electrostatic, eddy current,
	 density, sensor based,)
	Metallurgical
	Emissions
	Building on the microprocesses of particle technology (c.f. Training in
	Particle Technology) and fundamental knowledge in chemistry and
	thermodynamics, various technical process and related apparatus or
	machine technology of recycling technology are introduced including:
	Battery recycling
	ELV recycling
	Plastics recycling
	Non-ferrous metal recycling
	Aluminum recycling
	Tin recycling
	Slag recycling
	1-2 additional topics
Teaching Methods	Lectures (3 semester week hours)
	Seminar (1 semester week hour)
Pre-requisites	Recommendations: Module "training in particle technology"; "Grundlagen der
Accession	Viechanischen Verfahrenstechnik ; "Wiechanische Verfahrenstechnik"
Assessment	For the award of credit points it is necessary to pass the module exam, which
IVIELIIUUS	Unitallis.
	• or more)
	Pre-exam assessments: report

	Before the exam, the pre-exam assessments have to be satisfied.
Grading	The grade is generated from the examination result(s) with the following weights
	(w):
	• oral exam / written exam (1)
Materials/literature	H. Martens, D. Goldmann, Recyclingtechnik, Springer, Berlin, 2016
	H. Schubert: Handbuch der Mechanischen Verfahrenstechnik, Wiley-
	VCH, Weinheim, 2003
	Selected scientific papers
Workload	180 h (attendance: 60 h; self-studies: 120 h); self-studies includes the preparation and follow-up of the lecture course, the preparation and follow-up of the seminar including reporting, as well as the preparation for the written exam.