Course Descriptions for the Joint Study Programme "International Master of Science in Engineering, Entrepreneurship and Resources (MSc. ENTER)

Version 09.2019

Courses at **Technische Universität Bergakademie Freiberg** with the Specialization "**Mechanical and Process Engineering**"

Module Name	Training in Particle Technology
ECTS Credits	4
Responsible	Urs A. Peuker, Prof. DrIng.
Lecturer(s)	Research assistants at the Institute of Mechanical Process Engineering and
	Mineral Processing
Institute(s)	Institute of Mechanical Process Engineering and Mineral Processing
Duration	1 Semester (winter)
Teaching Language	English
Learning Outcome	The module aims at recalling the fundamentals of particle technology. It is set
(Competencies)	up using special exercises to practice scientific and technological calculations of
	particle size distributions and fundamental microprocesses.
	The principles of the mechanical micro-processes are introduced.
	The exercises also apply the fundamental approaches (micro-processes) to
	describe and to design process equipment. This will be done using case studies.
Contents	Particle characterization
	Particle size distribution
	Mixing of particle size distributions
	Separation of particle size distributions (classification)
	Grade recovery curves
	Micro processes in particle technology
	Particles in flow-fields (i.e. sedimentation)
	Flow through porous media
	 Particle-particle interactions (e.g. van-der-Waals-forces,
	 electrostatic interactions, DLVO-theory, capillary forces)
	 Breakage laws (i.e. breakage energy)
	Selected case studies form the fields:
	Filtration
	Sedimentation
	Agglomeration
	Classification
	Comminution
	And others
Teaching Methods	Lectures – Recall of fundamentals (1 semester week hour)
	Case studies / Exercises – Application of fundamentals (2 semester week hours)

Assessment Methods	For the award of credit points it is necessary to pass the module exam, which contains:
	 oral exam (min. 30 minutes) or written exam (120 minutes, if 8 students or more)
Grading	The grade is generated from the examination result(s) with the following weights (w):
	 oral exam/written exam (1)
Materials/literature	M. Stieß: Mechanische Verfahrenstechnik 1 - Partikeltechnologie,
	Springer-Verlag, Berlin, Heidelberg, 2009
	H. Schubert: Handbuch der Mechanischen Verfahrenstechnik, Wiley-
	VCH, Weinheim, 2003
	selected scientific papers
Workload	120 (attendance: 45 h; self-studies: 75 h)

Module Name	Training in Endurance and Design
ECTS Credits	6
Responsible	Matthias Kröger, Prof. Dr.
Lecturer(s)	Matthias Kröger, Prof. Dr.
	Robert Szlosarek, Dr.
Institute(s)	Institute for Machine Elements, Engineering Design and Manufacturing
Duration	1 Semester (winter)
Teaching Language	English
Learning Outcome	The students are able to analyze and design machine elements and machines.
(Competencies)	The students can dimension the main machine elements and can give a
	prediction of the endurance of these elements.
Contents	The module focuses on the following topics:
	Introduction in a CAD system
	 Dimensioning of components for static and cyclic loadings
	 Load analyzes of measured force or stress data
	 Design of shaft bearing systems and endurance calculation of bearings
	 Selection and calculation of screws and screw junctions
	 Endurance of gears and design of gear boxes
	 Own design and dimensioning of a bearing system and a gear box
Teaching Methods	Lectures (1 semester week hour)
	Exercises (2 semester week hours)
	Practical application (1 semester week hour)
Pre-requisites	Recommendations: basic knowledge in engineering design
Assessment	For the award of credit points it is necessary to pass the module exam, which
Methods	contains:
	 Pre-exam assessments – dimensioning and technical design
	 written exam (120 minutes)
	Before the exam, the pre-exam assessments have to be satisfied.
Grading	The grade is generated from the examination result(s) with the following weights
	(w):
	written exam (1)
Materials/literature	V. B. Bhandari: Design of Machine Elements, Fourth Edition. Mc Graw Hill
	Education, India (2016).

Workload	180 (attendance: 60 h; self-studies: 120 h)

Module Name	Conception of Process Equipment
ECTS Credits	3
Responsible	Urs A. Peuker, Prof. DrIng.
Lecturer(s)	Urs A. Peuker, Prof. DrIng.
Institute(s)	Institute of Mechanical Process Engineering and Mineral Processing
Duration	1 Semester (winter)
Teaching Language	English
Learning Outcome	The aim is the teaching of engineering thinking to (mineral) process engineers. It
(Competencies)	brings together the approaches of mechanical engineering and the process laws
	of process engineering. The students learn to analyze how a unit-operation is set
	up in an apparatus. The module further introduces material laws of suspensions,
	wet and dry powders and particle beds. Auxiliary units like pumps, gas filters,
	mixing vessels and industrial waste water technology are introduced.
Contents	Design strategies
	 Design of apparatus / design of process
	 Analyze of unit operation and process equipment
	Conceptual design
	Functionality
	New principles / parallelizing / serializing
	Material laws
	Suspension Rheology
	Solids Mechanics
	Agglomerate durability
	compression laws
	Auxiliary equipment
	Mixing vessels
	Gas cleaning by filters
	Settlers
	Liquid filters
	Membranes
Teaching Methods	Lectures (2 semester week hours)
Assessment	For the award of credit points it is necessary to pass the module exam, which
Methods	contains:
	• oral exam (min. 30 minutes) or written exam (120 minutes, if 8 students
	or more)
Grading	The grade is generated from the examination result(s) with the following weights
	(w):
	• oral exam / written exam (1)
Materials/literature	to be announced
Workload	180 (attendance: 60 h; self-studies: 120 h)
<u>L</u>	<u>, , , , , , , , , , , , , , , , , , , </u>

Module Name	Discrete Element Method
ECTS Credits	4
Responsible	Rüdiger Schwarze, Prof. DrIng.

Lecturer(s)	Rüdiger Schwarze, Prof. DrIng.
Institute(s)	Institute of Mechanics and Fluid Dynamics
Duration	1 Semester (winter)
Teaching Language	English
Learning Outcome	Students should remember the fundamentals of the discrete element method.
(Competencies)	They should be able to distinguish the different numerical techniques and algorithms applied in the discrete element method. They should be able to apply the discrete element method to simple problems in the field of granular materials.
Contents	 Most important ingredients are: modeling strategy (conceptual and numerical model); classification of DEM; contact detection; interaction force-displacement laws, contact and friction laws; algorithms for solving the equations of motion; modelling of granular material; introduction to simulation tools and software (Yade, LIGGHTS, etc.)
	 practical hints; applications; practical exercises in 2d and 3d.
Teaching Methods	Lectures (2 semester week hours) Exercises (1 semester week hour)
Pre-requisites	Recommendations: Fundamental of microstructures; continuum mechanics; introduction to scientific programming; fundamentals in mechanics
Assessment	For the award of credit points it is necessary to pass the module exam, which
Methods	 contains: oral exam (min. 30 minutes) or written exam (60 minutes, if 5 students or more)
Grading	 The grade is generated from the examination result(s) with the following weights (w): oral exam / written exam (1)
Materials/literature	Pöschel, T. & Schwager, T.: Computational Granular Dynamics, Springer Jing, L &Stephansson, O.: Fundamentals of Discrete Element Methods for Rock Engineering, Elsevier Matuttis, H.G. & Chen, J.: Understanding the Discrete Element Method, Wiley
Workload	120 (attendance: 45 h; self-studies: 75 h)

Module Name	Maintenance Engineering
ECTS Credits	3
Responsible	Holger Lieberwirth, Prof. DrIng.
Lecturer(s)	Holger Lieberwirth, Prof. DrIng.
Institute(s)	Institute of Mineral Processing Machines
Duration	1 Semester (winter)
Teaching Language	English
Learning Outcome (Competencies)	The students shall be enabled to understand maintenance as a complex of technical, technological, organizational and economic tasks and to plan the maintenance process within the framework of the production process control, to prepare it technologically and to implement it rationally, taking into account legal requirements.

Contents	- Content / Purpose / Tasks / Organization of maintenance
contents	
	- Damage processes, technical diagnostics, renewal processes
	- Maintenance methods
	- Planning of maintenance measures
	- Maintenance organization
	- Technology of maintenance
	- Reliability of technical systems
	- Maintenance-friendly design and configuration
	- Analysis of weak points of machines and plants
Teaching Methods	Lectures (2 semester week hours)
Assessment	For the award of credit points it is necessary to pass the module exam, which
Methods	contains:
	• oral exam (min. 30 minutes) or written exam (90 minutes, if 10 students
	or more)
Grading	The grade is generated from the examination result(s) with the following weights
	(w):
	• oral exam / written exam (1)
Materials/literature	Manzini, R., Regattieri A., Pham, H., Ferrari, E.: Maintenance of
	IndustrialSystems, Springer, 2010
	DIN EN 13306:2010-12: Maintenance – Maintenance Terminology, Beuth, 2010
Workload	90 (attendance: 30 h; self-studies: 60 h); self-studies include the preparation and
	follow-up of the lectures as well as preparation for the examination.

Module Name	Sustainable Engineering
ECTS Credits	4
Responsible	Matthias Kröger, Prof. Dr.
Lecturer(s)	Matthias Kröger, Prof. Dr.
	Robert Szlosarek, Dr.
Institute(s)	Institute for Machine Elements, Engineering Design and Manufacturing
Duration	1 Semester (winter)
Teaching Language	English
Learning Outcome	The students are able to analyze the sustainability of developed machines based
(Competencies)	on life-time analyses. The students can design machines considering criteria for
	sustainable design, production and use of machines.
Contents	The module focuses on the following topics:
	 Analyses of product life cycle and carbon footprint
	 Assessment of machine design in respect to environmental impact,
	resource and energy consumption
	 Design for reuse and recycling of machines and components
	 Repair-friendly and durable engineering design
	 Machine design for the Third World
	 Examples of sustainable and not sustainable system design
Teaching Methods	Lectures (1 semester week hour)
	Exercises (2 semester week hours)
Pre-requisites	Recommendations: design of machine elements or components of machine and
	apparatures

Assessment Methods	For the award of credit points it is necessary to pass the module exam, which contains:
	oral exam: 30 minutes
Grading	The grade is generated from the examination result(s) with the following weights
	(w):
	• written exam (1)
Materials/literature	Brundtland Report 1987.
	https://en.wikisource.org/wiki/Brundtland_Report
Workload	120 (attendance: 45 h; self-studies: 75 h)

Module Name	Project - Process Design Mineral Processing / Recycling
ECTS Credits	8
Responsible	Urs A. Peuker, Prof. DrIng.
Lecturer(s)	Research assistants at the Institute of Mechanical Process Engineering and
	Mineral Processing
Institute(s)	Institute of Mechanical Process Engineering and Mineral Processing
Duration	1 Semester (winter)
Teaching Language	English
Learning Outcome	The project work aims at the dimensioning of a mineral processing plant.
(Competencies)	On the basis of lab scale test (e.g. Bond grindability) the students work out a
	basic engineering of a processing plant of a given ore type / recycling question.
	The students learn to select the right lab scale tests, which provide the material
	and process data to quantify the individual processing steps. They learn the
	balancing of the material flows as well as of the auxiliary streams (e.g. process
	water).
Contents	Seminar:
	Introduction into basic engineering
	Plant layout
	Example of a case study
	 Selection of lab scale tests / using standard parameters (e.g. VDI guidelines)
	 Documentation
	Project:
	Selection of lab tests
	Lab work: determination of individual parameters
	Definition of interface between process steps
	 Selection of apparatus / dimensioning of process step
	Presentation of flow sheet.
Teaching Methods	Seminar (2 semester week hours)
U	Practical application(8 semester week hours)
Pre-requisites	Recommendations: Conception of process equipment; training in particle
	technology
Assessment	For the award of credit points it is necessary to pass the module exam, which
Methods	contains:
	 Report (basic engineering - process layout and applied engineering tools)
	• Presentation (determination of key parameters using engineering tools)

	 Presentation (process layout) All the above exams have to be passed or completed with at least 4.0.
Grading	The grade is generated from the examination result(s) with the following weights (w):
	 Report (basic engineering - process layout and applied engineering tools) [w: 2]
	 Presentation (determination of key parameters using engineering tools) [w: 1]
	Presentation (process layout) [w: 1]
Materials/literature	selected papers and textbook chapters for individual project topic (to be
	announced in the first week)
	VDI guidelines and international standards
Workload	240 (attendance: 150 h; self-studies: 90 h)